123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- # Test libsecp256k1' group operation implementations using prover.sage
-
- import sys
-
- load("group_prover.sage")
- load("weierstrass_prover.sage")
-
- def formula_secp256k1_gej_double_var(a):
- """libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
- rz = a.Z * a.Y
- rz = rz * 2
- t1 = a.X^2
- t1 = t1 * 3
- t2 = t1^2
- t3 = a.Y^2
- t3 = t3 * 2
- t4 = t3^2
- t4 = t4 * 2
- t3 = t3 * a.X
- rx = t3
- rx = rx * 4
- rx = -rx
- rx = rx + t2
- t2 = -t2
- t3 = t3 * 6
- t3 = t3 + t2
- ry = t1 * t3
- t2 = -t4
- ry = ry + t2
- return jacobianpoint(rx, ry, rz)
-
- def formula_secp256k1_gej_add_var(branch, a, b):
- """libsecp256k1's secp256k1_gej_add_var"""
- if branch == 0:
- return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
- if branch == 1:
- return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
- z22 = b.Z^2
- z12 = a.Z^2
- u1 = a.X * z22
- u2 = b.X * z12
- s1 = a.Y * z22
- s1 = s1 * b.Z
- s2 = b.Y * z12
- s2 = s2 * a.Z
- h = -u1
- h = h + u2
- i = -s1
- i = i + s2
- if branch == 2:
- r = formula_secp256k1_gej_double_var(a)
- return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
- if branch == 3:
- return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
- i2 = i^2
- h2 = h^2
- h3 = h2 * h
- h = h * b.Z
- rz = a.Z * h
- t = u1 * h2
- rx = t
- rx = rx * 2
- rx = rx + h3
- rx = -rx
- rx = rx + i2
- ry = -rx
- ry = ry + t
- ry = ry * i
- h3 = h3 * s1
- h3 = -h3
- ry = ry + h3
- return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
-
- def formula_secp256k1_gej_add_ge_var(branch, a, b):
- """libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
- if branch == 0:
- return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
- if branch == 1:
- return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
- z12 = a.Z^2
- u1 = a.X
- u2 = b.X * z12
- s1 = a.Y
- s2 = b.Y * z12
- s2 = s2 * a.Z
- h = -u1
- h = h + u2
- i = -s1
- i = i + s2
- if (branch == 2):
- r = formula_secp256k1_gej_double_var(a)
- return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
- if (branch == 3):
- return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
- i2 = i^2
- h2 = h^2
- h3 = h * h2
- rz = a.Z * h
- t = u1 * h2
- rx = t
- rx = rx * 2
- rx = rx + h3
- rx = -rx
- rx = rx + i2
- ry = -rx
- ry = ry + t
- ry = ry * i
- h3 = h3 * s1
- h3 = -h3
- ry = ry + h3
- return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
-
- def formula_secp256k1_gej_add_zinv_var(branch, a, b):
- """libsecp256k1's secp256k1_gej_add_zinv_var"""
- bzinv = b.Z^(-1)
- if branch == 0:
- return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a)
- if branch == 1:
- bzinv2 = bzinv^2
- bzinv3 = bzinv2 * bzinv
- rx = b.X * bzinv2
- ry = b.Y * bzinv3
- rz = 1
- return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz))
- azz = a.Z * bzinv
- z12 = azz^2
- u1 = a.X
- u2 = b.X * z12
- s1 = a.Y
- s2 = b.Y * z12
- s2 = s2 * azz
- h = -u1
- h = h + u2
- i = -s1
- i = i + s2
- if branch == 2:
- r = formula_secp256k1_gej_double_var(a)
- return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
- if branch == 3:
- return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
- i2 = i^2
- h2 = h^2
- h3 = h * h2
- rz = a.Z
- rz = rz * h
- t = u1 * h2
- rx = t
- rx = rx * 2
- rx = rx + h3
- rx = -rx
- rx = rx + i2
- ry = -rx
- ry = ry + t
- ry = ry * i
- h3 = h3 * s1
- h3 = -h3
- ry = ry + h3
- return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
-
- def formula_secp256k1_gej_add_ge(branch, a, b):
- """libsecp256k1's secp256k1_gej_add_ge"""
- zeroes = {}
- nonzeroes = {}
- a_infinity = False
- if (branch & 4) != 0:
- nonzeroes.update({a.Infinity : 'a_infinite'})
- a_infinity = True
- else:
- zeroes.update({a.Infinity : 'a_finite'})
- zz = a.Z^2
- u1 = a.X
- u2 = b.X * zz
- s1 = a.Y
- s2 = b.Y * zz
- s2 = s2 * a.Z
- t = u1
- t = t + u2
- m = s1
- m = m + s2
- rr = t^2
- m_alt = -u2
- tt = u1 * m_alt
- rr = rr + tt
- degenerate = (branch & 3) == 3
- if (branch & 1) != 0:
- zeroes.update({m : 'm_zero'})
- else:
- nonzeroes.update({m : 'm_nonzero'})
- if (branch & 2) != 0:
- zeroes.update({rr : 'rr_zero'})
- else:
- nonzeroes.update({rr : 'rr_nonzero'})
- rr_alt = s1
- rr_alt = rr_alt * 2
- m_alt = m_alt + u1
- if not degenerate:
- rr_alt = rr
- m_alt = m
- n = m_alt^2
- q = n * t
- n = n^2
- if degenerate:
- n = m
- t = rr_alt^2
- rz = a.Z * m_alt
- infinity = False
- if (branch & 8) != 0:
- if not a_infinity:
- infinity = True
- zeroes.update({rz : 'r.z=0'})
- else:
- nonzeroes.update({rz : 'r.z!=0'})
- rz = rz * 2
- q = -q
- t = t + q
- rx = t
- t = t * 2
- t = t + q
- t = t * rr_alt
- t = t + n
- ry = -t
- rx = rx * 4
- ry = ry * 4
- if a_infinity:
- rx = b.X
- ry = b.Y
- rz = 1
- if infinity:
- return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
- return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
-
- def formula_secp256k1_gej_add_ge_old(branch, a, b):
- """libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
- a_infinity = (branch & 1) != 0
- zero = {}
- nonzero = {}
- if a_infinity:
- nonzero.update({a.Infinity : 'a_infinite'})
- else:
- zero.update({a.Infinity : 'a_finite'})
- zz = a.Z^2
- u1 = a.X
- u2 = b.X * zz
- s1 = a.Y
- s2 = b.Y * zz
- s2 = s2 * a.Z
- z = a.Z
- t = u1
- t = t + u2
- m = s1
- m = m + s2
- n = m^2
- q = n * t
- n = n^2
- rr = t^2
- t = u1 * u2
- t = -t
- rr = rr + t
- t = rr^2
- rz = m * z
- infinity = False
- if (branch & 2) != 0:
- if not a_infinity:
- infinity = True
- else:
- return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
- zero.update({rz : 'r.z=0'})
- else:
- nonzero.update({rz : 'r.z!=0'})
- rz = rz * (0 if a_infinity else 2)
- rx = t
- q = -q
- rx = rx + q
- q = q * 3
- t = t * 2
- t = t + q
- t = t * rr
- t = t + n
- ry = -t
- rx = rx * (0 if a_infinity else 4)
- ry = ry * (0 if a_infinity else 4)
- t = b.X
- t = t * (1 if a_infinity else 0)
- rx = rx + t
- t = b.Y
- t = t * (1 if a_infinity else 0)
- ry = ry + t
- t = (1 if a_infinity else 0)
- rz = rz + t
- if infinity:
- return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
- return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
-
- if __name__ == "__main__":
- check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
- check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
- check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
- check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge)
- check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)
-
- if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
- check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
- check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
- check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
- check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43)
- check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)
|