123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # Define field size and field
- P = 2^256 - 2^32 - 977
- F = GF(P)
- BETA = F(0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee)
-
- assert(BETA != F(1) and BETA^3 == F(1))
-
- orders_done = set()
- results = {}
- first = True
- for b in range(1, P):
- # There are only 6 curves (up to isomorphism) of the form y^2=x^3+B. Stop once we have tried all.
- if len(orders_done) == 6:
- break
-
- E = EllipticCurve(F, [0, b])
- print("Analyzing curve y^2 = x^3 + %i" % b)
- n = E.order()
- # Skip curves with an order we've already tried
- if n in orders_done:
- print("- Isomorphic to earlier curve")
- continue
- orders_done.add(n)
- # Skip curves isomorphic to the real secp256k1
- if n.is_pseudoprime():
- print(" - Isomorphic to secp256k1")
- continue
-
- print("- Finding subgroups")
-
- # Find what prime subgroups exist
- for f, _ in n.factor():
- print("- Analyzing subgroup of order %i" % f)
- # Skip subgroups of order >1000
- if f < 4 or f > 1000:
- print(" - Bad size")
- continue
-
- # Iterate over X coordinates until we find one that is on the curve, has order f,
- # and for which curve isomorphism exists that maps it to X coordinate 1.
- for x in range(1, P):
- # Skip X coordinates not on the curve, and construct the full point otherwise.
- if not E.is_x_coord(x):
- continue
- G = E.lift_x(F(x))
-
- print(" - Analyzing (multiples of) point with X=%i" % x)
-
- # Skip points whose order is not a multiple of f. Project the point to have
- # order f otherwise.
- if (G.order() % f):
- print(" - Bad order")
- continue
- G = G * (G.order() // f)
-
- # Find lambda for endomorphism. Skip if none can be found.
- lam = None
- for l in Integers(f)(1).nth_root(3, all=True):
- if int(l)*G == E(BETA*G[0], G[1]):
- lam = int(l)
- break
- if lam is None:
- print(" - No endomorphism for this subgroup")
- break
-
- # Now look for an isomorphism of the curve that gives this point an X
- # coordinate equal to 1.
- # If (x,y) is on y^2 = x^3 + b, then (a^2*x, a^3*y) is on y^2 = x^3 + a^6*b.
- # So look for m=a^2=1/x.
- m = F(1)/G[0]
- if not m.is_square():
- print(" - No curve isomorphism maps it to a point with X=1")
- continue
- a = m.sqrt()
- rb = a^6*b
- RE = EllipticCurve(F, [0, rb])
-
- # Use as generator twice the image of G under the above isormorphism.
- # This means that generator*(1/2 mod f) will have X coordinate 1.
- RG = RE(1, a^3*G[1]) * 2
- # And even Y coordinate.
- if int(RG[1]) % 2:
- RG = -RG
- assert(RG.order() == f)
- assert(lam*RG == RE(BETA*RG[0], RG[1]))
-
- # We have found curve RE:y^2=x^3+rb with generator RG of order f. Remember it
- results[f] = {"b": rb, "G": RG, "lambda": lam}
- print(" - Found solution")
- break
-
- print("")
-
- print("")
- print("")
- print("/* To be put in src/group_impl.h: */")
- first = True
- for f in sorted(results.keys()):
- b = results[f]["b"]
- G = results[f]["G"]
- print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
- first = False
- print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(")
- print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
- print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
- print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
- print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
- print(");")
- print("static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(")
- print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
- print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
- print(");")
- print("# else")
- print("# error No known generator for the specified exhaustive test group order.")
- print("# endif")
-
- print("")
- print("")
- print("/* To be put in src/scalar_impl.h: */")
- first = True
- for f in sorted(results.keys()):
- lam = results[f]["lambda"]
- print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
- first = False
- print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
- print("# else")
- print("# error No known lambda for the specified exhaustive test group order.")
- print("# endif")
- print("")
|