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1 Weakness and consequences

1.1 Solidity storage layout

Any contract’s storage is a continuous 256-bit address space consisting of 32-bit values. In order to implement
dynamically sized data structures like maps and arrays, Solidity distributes their entries in a pseudo-random
location. Due to the vast 256-bit range of addresses collisions are statistically extremely improbable and of
no practical relevance.

In the case of a dynamic array at variable slot p, data is written to continuous locations starting at
keccak(p). The array itself contains the length information.

For maps stored in variable slot p the data for index k can be found at keccak(k.p) where . is the
concatenation operator.

1.2 The Weakness

Any unchecked array write is potentially dangerous, as the storage-location of all variables is publicly known
and an unconstrained array index can be reverse engineered to target them.

Algorithm 1: A completely unchecked array write

1 pragma solidity 0.4.25;

2

3 contract MyContract {

4 address private owner;

5 uint[] private arr;

6

7 constructor () public {

8 arr = new uint [](0);

9 owner = msg.sender;

10 }

11

12 function write(unit index , uint value) {

13 arr[index] = value;

14 }

15 }

16

In the following example the pop function incorrectly checks for an array length >= 0, thereby allowing
the value to underflow when called with an empty array. Once this weakness is exploited update in Algorithm
2 behaves just like write did in Algorithm 1.
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Algorithm 2: An incorrectly managed array length

1 pragma solidity 0.4.25;

2

3 contract MyContract {

4 address private owner;

5 uint[] private arr;

6

7 constructor () public {

8 arr = new uint [](0);

9 owner = msg.sender;

10 }

11

12 function push(value) {

13 arr[arr.length] = value;

14 arr.length ++;

15 }

16

17 function pop() {

18 require(arr.length >= 0);

19 arr.length --;

20 }

21

22 function update(unit index , uint value) {

23 require(index < arr.length);

24 arr[index] = value;

25 }

26 }

27

2 Vulnerable contracts in literature

collect vulnerable contracts used by different papers to motivate/illustrate the weakness

3 Code properties and automatic detection

summarize the code properties that tools are looking for so that they can detect the weakness

4 Exploit sketch

sketch ways to potentially exploit the different variants of the weakness.
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