
SWC-124: Write to
Arbitrary Storage
Location
192.127 Seminar in Software Engineering
(Smart Contracts)

Ivaylo Ivanov & Peter Millauer
January 18, 2024



Outline

Introduction

SWC-124: Weakness Outline

Examples

Detecting and Exploiting

Detecting SWC-124

Exploiting SWC-124

Future Work

Conclusion

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 2 / 17



SWC-124: Weakness Outline

SWC-124 is a weakness that allows attackers to write to
places in the storage where they should not be able to. It
can be used to gain unauthorized access, overwrite data,
steal funds etc.

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 3 / 17



SWC-124: Weakness Outline

We generally differentiate three types of SWC-124:

• unchecked array write
• incorrect array length check
• unchecked assembly code

Examples follow, use in production at your own risk ;)

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 4 / 17



Why this works

A dynamic array in storage slot p stores its data at
continuous addresses starting at keccak(p).

For example, if the variable x is a dynamic array occupying
storage slot 3, x [o] can be found at keccak(0x3) + o.

An attacker can use this information to overwrite any
storage slot by finding an appropriate offset value.

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 5 / 17



Why this works

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 6 / 17



Unchecked Array Write

1 pragma solidity 0.4.25;

2
3 contract MyContract {

4 address private owner;

5 uint[] private arr;

6
7 constructor () public {

8 arr = new uint [](0);

9 owner = msg.sender;

10 }

11
12 function write(unit index , uint value) {

13 arr[index] = value;

14 }

15 }

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 7 / 17



Incorrect Array Length Check

1 pragma solidity 0.4.25;

2
3 contract MyContract {

4 uint[] private arr;

5
6 constructor () public {

7 arr = new uint [](0);

8 }

9
10 function push(value) {

11 arr[arr.length] = value;

12 arr.length ++;

13 }

14
15 function pop() {

16 require(arr.length >= 0);

17 arr.length --;

18 }

19
20 function update(unit index , uint value) {

21 require(index < arr.length);

22 arr[index] = value;

23 }

24 }

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 8 / 17



Unchecked Assembly
1 pragma solidity 0.4.25;

2
3 contract MyContract {

4 address private owner;

5 mapping(address => bool) public managers;

6
7 constructor () public {

8 owner = msg.sender;

9 setNextUserRole(msg.sender);

10 }

11
12 function setNextManager(address next) internal {

13 uint256 slot;

14 assembly {

15 slot := managers.slot

16 sstore(slot , next)

17 }

18 bytes32 location = keccak256(abi.encode (160, uint256(slot)));

19 assembly {

20 sstore(location , true)

21 }

22 }

23
24 function registerUser(address user) {

25 require(msg.sender == owner);

26 setNextManager(user);

27 }

28 }

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 9 / 17



SWC-124: Detection Heuristics 1

Any contract without dynamic arrays (or mappings with
integer keys) or raw assembly including a SSTORE
instruction can immediately be considered non-vulnerable.

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 10 / 17



SWC-124: Detection Heuristics 2

If heuristic 1 does not hold, we can then apply a second
heuristic: checking the solidity compiler version, specified
at the top of the contract. Solidity version 0.8.0+ introduced
integer under- and overflow protection, which are enabled
per default and require extra work to be disabled.

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 11 / 17



SWC-124: Detection Heuristics 2.1

If the version of the contract is higher than 0.8.0, we
examine whether unchecked arithmetic has been used for
modifying the arrays. If this is not the case, which it is not
most of the time, we can then determine that the contract is
non-vulnerable. Applying this heuristic, we found a contract
that could have been vulnerable had it been compiled with
a lower solidity version.

Note on assembly
Due to the nature of the examples given, we could not find
reliable heuristics for unchecked assembly.

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 12 / 17



SWC-124: Detection Tools

• existing static analysis tools were useless - most of
them had no support for SWC-124

• solc-select - for changing solidity compiler versions
• slither - for printing contract variable layout

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 13 / 17



$ slither Bethorde.sol --print variable-order

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 14 / 17



Vulnerable Examples

Using the previously mentioned heuristics, we could not
find a vulnerable contract from the dataset.

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 15 / 17



Future Work

• add heuristics to static analysis tool like slither or
mythril

• develop additional vulnerable and non-vulnerable
contracts and test against heuristics

• train a model against the resulting dataset
• fine-tune heuristics

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 16 / 17



Questions?

January 18, 2024 SWC-124, Ivaylo Ivanov & Peter Millauer 17 / 17


	Introduction
	SWC-124: Weakness Outline
	Examples

	Detecting and Exploiting
	Detecting SWC-124
	Exploiting SWC-124

	Future Work
	Conclusion

