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SWC-124: Weakness Outline

SWC-124 is a weakness that allows attackers to write to
places in the storage where they should not be able to. It
can be used to gain unauthorized access, overwrite data,
steal funds etc.
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SWC-124: Weakness Outline

We generally differentiate three types of SWC-124:

• unchecked array write
• incorrect array length check
• unchecked assembly code

Examples follow, use in production at your own risk ;)
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Why this works

A dynamic array in storage slot p stores its data at
continuous addresses starting at keccak(p).

For example, if the variable x is a dynamic array occupying
storage slot 3, x [o] can be found at keccak(0x3) + o.

An attacker can use this information to overwrite any
storage slot by finding an appropriate offset value.
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Why this works
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Unchecked Array Write

1 pragma solidity 0.4.25;

2
3 contract MyContract {

4 address private owner;

5 uint[] private arr;

6
7 constructor () public {

8 arr = new uint [](0);

9 owner = msg.sender;

10 }

11
12 function write(unit index , uint value) {

13 arr[index] = value;

14 }

15 }
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Incorrect Array Length Check

1 pragma solidity 0.4.25;

2
3 contract MyContract {

4 uint[] private arr;

5
6 constructor () public {

7 arr = new uint [](0);

8 }

9
10 function push(value) {

11 arr[arr.length] = value;

12 arr.length ++;

13 }

14
15 function pop() {

16 require(arr.length >= 0);

17 arr.length --;

18 }

19
20 function update(unit index , uint value) {

21 require(index < arr.length);

22 arr[index] = value;

23 }

24 }
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Unchecked Assembly
1 pragma solidity 0.4.25;

2
3 contract MyContract {

4 address private owner;

5 mapping(address => bool) public managers;

6
7 constructor () public {

8 owner = msg.sender;

9 setNextUserRole(msg.sender);

10 }

11
12 function setNextManager(address next) internal {

13 uint256 slot;

14 assembly {

15 slot := managers.slot

16 sstore(slot , next)

17 }

18 bytes32 location = keccak256(abi.encode (160, uint256(slot)));

19 assembly {

20 sstore(location , true)

21 }

22 }

23
24 function registerUser(address user) {

25 require(msg.sender == owner);

26 setNextManager(user);

27 }

28 }
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SWC-124: Detection Heuristics 1

Any contract without dynamic arrays (or mappings with
integer keys) or raw assembly including a SSTORE
instruction can immediately be considered non-vulnerable.
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SWC-124: Detection Heuristics 2

If heuristic 1 does not hold, we can then apply a second
heuristic: checking the solidity compiler version, specified
at the top of the contract. Solidity version 0.8.0+ introduced
integer under- and overflow protection, which are enabled
per default and require extra work to be disabled.
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SWC-124: Detection Heuristics 2.1

If the version of the contract is higher than 0.8.0, we
examine whether unchecked arithmetic has been used for
modifying the arrays. If this is not the case, which it is not
most of the time, we can then determine that the contract is
non-vulnerable. Applying this heuristic, we found a contract
that could have been vulnerable had it been compiled with
a lower solidity version.

Note on assembly
Due to the nature of the examples given, we could not find
reliable heuristics for unchecked assembly.
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SWC-124: Detection Tools

• existing static analysis tools were useless - most of
them had no support for SWC-124

• solc-select - for changing solidity compiler versions
• slither - for printing contract variable layout
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$ slither Bethorde.sol --print variable-order
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Vulnerable Examples

Using the previously mentioned heuristics, we could not
find a vulnerable contract from the dataset.
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Future Work

• add heuristics to static analysis tool like slither or
mythril

• develop additional vulnerable and non-vulnerable
contracts and test against heuristics

• train a model against the resulting dataset
• fine-tune heuristics
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Questions?
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