192.127 Seminar in Software Engineering (Smart Contracts)
SWC-124: Write to Arbitrary Storage Location

¥ YOUR NAME AND STUDENT ID ***
WT 2023/24

1 Weakness and consequences

1.1 Solidity storage layout

Any contract’s storage is a continuous 256-bit address space consisting of 32-bit values. In order to implement
dynamically sized data structures like maps and arrays, Solidity distributes their entries in a pseudo-random
location. Due to the vast 256-bit range of addresses collisions are statistically extremely improbable and of
no practical relevance.

In the case of a dynamic array at variable slot p, data is written to continuous locations starting at
keccak(p). The array itself contains the length information.

For maps stored in variable slot p the data for index k can be found at keccak(k.p) where . is the
concatenation operator.

1.2 The Weakness

Any unchecked array write is potentially dangerous, as the storage-location of all variables is publicly known
and an unconstrained array index can be reverse engineered to target them.

Algorithm 1: A completely unchecked array write

1 pragma solidity 0.4.25;
contract MyContract {

1 address private owner;

uint [] private arr;

7 constructor () public {
8 arr = new uint[](0);
9 owner = msg.sender;

10 }

12 function write(unit index, uint value) {
13 arr [index] = value;

14 }

15 3

In the following example the pop function incorrectly checks for an array length >= 0, thereby allowing
the value to underflow when called with an empty array. Once this weakness is exploited update in Algorithm
2 behaves just like write did in Algorithm 1.

Algorithm 2: An incorrectly managed array length

1 pragma solidity 0.4.25;

contract MyContract {
address private owner;
uint [] private arr;

7 constructor () public {
8 arr = new uint [](0);
9 owner = msg.sender;

0 ¥

arr [arr.length] = value;
1 arr.length++;

15 }

1
1
12 function push(value) {
1
1

17 function pop() {
18 require (arr.length >= 0);
19 arr.length--;

20 }

22 function update(unit index, uint value) {
23 require (index < arr.length);

24 arr[index] = value;

25 }

26 ¥

2 Vulnerable contracts in literature

collect vulnerable contracts used by different papers to motivate/illustrate the weakness

3 Code properties and automatic detection

summarize the code properties that tools are looking for so that they can detect the weakness

4 Exploit sketch

sketch ways to potentially exploit the different variants of the weakness.

[4] 3] 2] [1]

References

[1] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and Sang Kil Cha. Smartian:
Enhancing smart contract fuzzing with static and dynamic data-flow analyses. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 227-239, 2021.

[2] Johannes Krupp and Christian Rossow. teEther: Gnawing at ethereum to automatically exploit smart
contracts. In 27th USENIX Security Symposium (USENIX Security 18), pages 1317-1333, Baltimore,
MD, August 2018. USENIX Association.

[3] Siddhasagar Pani, Harshita Vani Nallagonda, Vigneswaran, Raveendra Kumar Medicherla, and Rajan
M. Smartfuzzdrivergen: Smart contract fuzzing automation for golang. In Proceedings of the 16th

Innovations in Software Engineering Conference, ISEC 23, New York, NY, USA, 2023. Association for
Computing Machinery.

[4] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Biinzli, and Martin Vechev.
Securify: Practical security analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 18, page 67-82, New York, NY, USA,
2018. Association for Computing Machinery.

