Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
nitowa 0801220596 iterative solution with recursive function 2 år sedan
config/db add db write to graph impl 2 år sedan
spark-packages working graph implementation and improved shell scripts 2 år sedan
src/spark iterative solution with recursive function 2 år sedan
.gitignore add db write to graph impl 2 år sedan
README.md add clarification to README 2 år sedan
clean.py progress on mapping data, finding clusters, probably inefficient 2 år sedan
settings.json working graph implementation and improved shell scripts 2 år sedan
setup.py progress on mapping data, finding clusters, probably inefficient 2 år sedan
small_test_data.csv progress on mapping data, finding clusters, probably inefficient 2 år sedan
start_services.sh working graph implementation and improved shell scripts 2 år sedan
submit.sh working graph implementation and improved shell scripts 2 år sedan
submit_graph.sh working graph implementation and improved shell scripts 2 år sedan

README.md

Project Description

TODO

Installation

Prerequisites:

For the graph implementation specifically you need to install graphframes manually from a third party since the official release is incompatible with spark 3.x (pull request pending). A prebuilt copy is supplied in the spark-packages directory.

Setting up

  • Modify settings.json to reflect your setup. If you are running everything locally you can use start_services.sh to turn everything on in one swoop. It might take a few minutes for Cassandra to become available.
  • Load the development database by running python3 setup.py from the project root. Per default this will move small_test_data.csv into the transactions table.

Deploying:

  • Start the spark workload by either running submit.sh (slow) or submit_graph.sh (faster)
  • If you need to clean out the Database you can run python3 clean.py. Be wary that this wipes all table definitions and data.